教案的设计应注重与实际教学情况的结合,以便更好地引导学生的学习和思考,教案的制定要基于课程标准,以确保教学内容的科学性和合理性,职场范文网小编今天就为您带来了17的分解教案精选8篇,相信一定会对你有所帮助。
17的分解教案篇1
一、教材分析
1、教材的地位与作用
“整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。
因式分解是一种常用的代数式的恒等变形,因式分解是多项式乘法公式的逆向变形,它是将一个多项式变形为多项式与多项式的乘积。
2、教学目标
(1)会推导乘法公式
(2)在应用乘法公式进行计算的基础上,感受乘法公式的作用和价值。
(3)会用提公因式法、公式法进行因式分解。
(4)了解因式分解的一般步骤。
(5)在因式分解中,经历观察、探索和做出推断的过程,提高分析问题和解决问题的能力。
3、重点、难点和关键
重点:乘法公式的意义、分式的由来和正确运用;用提公因式法和公式法进行因式分解。
难点:正确运用乘法公式;正确分解因式。
关键:正确理解乘法公式和因式分解的意义。
二、本单元教学的方法和策略:
1.注重知识形成的探索过程,让学生在探索过程中领悟知识,在领悟过程中建构体系,从而更好地实现知识体系的更新和知识的正向迁移.
2.知识内容的呈现方式力求与学生已有的知识结构相联系,同时兼顾学生的思维水平和心理特征.
3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.
4.注意从生活中选取素材,给学生提供一些交流、讨论的空间,让学生从中体会数学的应用价值,逐步养成谈数学、想数学、做数学的良好习惯.
三、课时安排:
2.1平方差公式 1课时
2.2完全平方公式 2课时
2.3用提公因式法进行因式分解 1课时
2.4用公式法进行因式分解 2课时
17的分解教案篇2
教研内容:
质数与合数、分解质因数
教学目标:
1、能够理解质数与合数的意义。能正确判断一个数是质数还是合数。了解100以内的质数,熟悉20以内的质数。理解质因数、分解质因数的意义。会把一个合数分解质因数,掌握用短除式分解质因数。
2、培养学生观察、比较、概括和判断的能力,以及自主探索、独立思考、合作交流的能力。
3、在研究过程中体验成功带来的学习乐趣,感受数学文化的魅力,同时在教学中渗透“对立统一”的辩证唯物主义的观点。
教学重点:
1、 理解质数和合数的.意义,质因数和分解质因数的意义。
2、 分解质因数的方法。
教学难点:
1、如何判断一个数是质数还是合数。
2、分清因数和质因数,质因数和分解质因数的联系与区别。用短除法分解质因数。
重难点突破:
1、从研究团体操表演中各方阵人数的特点这一情境入手,抓住学生日常生活中喜闻乐见的事物,把抽象的数学概念与学生的生活实际紧密相连。通过把每个数的因数罗列出来,思考:有两个以上因数的,都能排成方阵吗?进一步研究,验证,概况出质数和合数的定义。再出示几个数,让学生学会判断是质数还是合数,也可让学生自己写出几个质数和合数。给学生充分的时间交流、评判,以达到辨析概念的目的。
2、在认识质因数、分解质因数时,可让学生用自己的方法对合数进行分解,然后从学生中选择用塔式分解式的方法,进行交流,归纳质因数,分解质因数的意义;然后学会用塔式分解式分解质因数。学习短除法分解质因数时,教师可先让学生了解格式,然后学生自己试算,然后归纳步骤。
教学要点:
1、认识质数和合数。围绕“排成各个方阵的人数,分别是24、25、40、35、32,这些数有什么特点呢”这一问题,放手让学生寻找这些数的特点。教师在学生思考后可适当引导,看组成方阵的人数与它们的因数有关系吗,让学生观察因数的个数,初步得出这些数因数的个数都在两个以上的结论。再利用学具摆一摆,在感知的基础上,对列举的个数按因数的个数进行分类,得出非零自然数按照因数的个数分类可分成质数、合数和1。
2、分解质因数。先安排学生列塔式分解式对具体数进行分解,让学生清楚地认识的到质因数时一个合数的因数,同时还必须是质数的双层含义。在学习用短除法分解质因数时,让学生按照:了解格式,试算,对分解步骤进行归纳这三步完成的。
17的分解教案篇3
设计说明
?数学课程标准》指出:学生是数学学习的主人,教师只是学生学习的组织者、引导者和合作者。本课主要是在教师的.引导下,让学生通过自主探索、合作交流、归纳总结的方式获得新知,这样真正做到把课堂还给学生,让学生真正成为学习的主人。本课教学在设计上主要有以下特点:
1.新课伊始,利用学生熟悉的生活中人与人之间关系的情境引入,不仅可以激发学生学习的兴趣,同时还能使学生初步感知事物之间的关系是相互依存的,为学生探究新知奠定基础。
2.结合运动会上两个班排出的队形图列出乘法算式来认识倍数与因数。使数学教学紧密联系学生的生活实际,有效地激发学生的学习兴趣,使学生积极主动地参与到学习中去。本环节设计小组自学活动,让学生在小组内完成对倍数与因数的认识。学生通过阅读、质疑、交流,逐步形成自学能力,体验到自主学习的快乐。
3.在小组内交流判断谁是7的倍数,通过合作交流让学生掌握不同的方法,以开发学生的创新思维。
课前准备
教师准备ppt课件百数表
教学过程
⊙创设情境,导入新课
师:同学们,我们人与人之间存在着各种关系,谁能说一说自己与爸爸的关系是什么?
生1:父子关系。
生2:父女关系。
师:那么你们与老师又是什么关系呢?
生:师生关系。
师:能说老师是师生关系吗?
生:不能。
师小结:是啊,人与人之间的关系不是独立的,是相互依存的。在数学王国里,也有一些存在着相互依存关系的数,它们就是倍数与因数。(板书课题)
设计意图:让学生知道数学知识的学习离不开生活,通过生活中人与人之间的关系引入,初步感知关系是相互的,同时使学生感受到数学与生活的联系,从而激发学生学习数学的兴趣。
⊙自主探究,合作交流
1.认识倍数与因数。
(1)课件出示教材31页第一个问题。
师:仔细观察两个班的队形,请你算一算两班各有多少人。
(2)交流计算结果。
9×4=36(人)5×7=35(人)
(3)回顾乘法算式各部分的名称。
师:请你们说一说这两个算式里各部分的名称。(学生任选一题,说出各部分的名称)
师:这两个乘法算式里就有我们今天要研究的内容。现在请同学们自学教材31页“认一认”,并思考下面的问题。(课件出示教材31页第二个问题)
思考:①读了智慧老人的话,你知道了什么?
②关于倍数与因数,你发现了什么?
预设生1:在算式9×4=36中,36是9和4的倍数,9和4是36的因数。
生2:在算式5×7=35中,35是5和7的倍数,5和7是35的因数。
生3:倍数与因数指的是乘法算式中积和乘数之间的关系。
生4:在学习倍数与因数时,只在非0自然数范围内研究。
(4)质疑:在算式5×7=35中,能说5和7是因数,35是倍数吗?为什么?
学生讨论后师指出:倍数与因数是两个数之间的关系,是相互依存的。叙述时一定要说清楚谁是谁的倍数,谁是谁的因数。
17的分解教案篇4
活动目标:
1、巩固8的分解与组成,为计算打基础。
2、培养幼儿分析、判断、推理能力。
3、培养幼儿边操作边讲述的习惯。
4、喜欢数学活动,乐意参与各种操作游戏,培养思维的逆反性。
活动准备:
演示板、数启操作盒(雪花片)白纸、铅笔。
活动过程:
一、幼儿听音乐有序地取智慧盒入座。
二、回忆8的组成
1、碰球游戏,碰数字8
1球碰几球?
1球碰7球。
3球碰几球?
3球碰5球……
2、游戏复习8的组成。
三、学习8的分解与组成
1、 出示数启演示板,利用演示板的方格,分别将两种颜色进行摆放。
2、 根据不同的分法,将它们念一念。
3、在黑板上写出相应的算式,以此类推。
4、 公园里有8只小兔,被大象请走了3只,剩下来还有几只小兔?
5、 这道题先告诉我们什么?后告诉我们什么?要我们算什么?用分解怎么去分?8可以分成3和5 请个别幼儿列式:8 3 5 以此类推。
6、观察8的分解与组成示意图,理解整体与部分之间的递增、递减、互补、互换的关系。
四、幼儿操作,提升经验
幼儿开始操作,教师巡回指导,尝试在白纸上记录自己的操作结果,列出正确的算式。
活动反思:
幼儿是数学学习的主人,教师是数学学习的组织者、引导者与合作者,课堂上幼儿唱“主角”,教师只是一个“配角”,把时间和空间都留给幼儿进行思考、探究、交流,关注幼儿在学习的过程中表现出来的情感、态度、思维等方面。活动穿插游戏或组织一些有趣的活动,让幼儿在愉快的活动氛围中得到提高。
17的分解教案篇5
一、教学目标
?知识与技能】
了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。
?过程与方法】
通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。
?情感态度价值观】
在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。
二、教学重难点
?教学重点】
运用平方差公式分解因式。
?教学难点】
灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的彻底性。
三、教学过程
(一)引入新课
我们学习了因式分解的定义,还学习了提公因式法分解因式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?
大家先观察下列式子:
(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=
他们有什么共同的特点?你可以得出什么结论?
(二)探索新知
学生独立思考或者与同桌讨论。
引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。
提问1:能否用语言以及数学公式将其特征表述出来?
17的分解教案篇6
让幼儿了解生活中的数学
活动目标
1经力对数量为8.9的物品进行分解、组合的过程,感知8、9的分解、组合。
2感受总数与部分数之间的关系。
3培养初步的观察力,思考能力。
4引导幼儿积极与材料互动,体验数学活动的乐趣。
5引发幼儿学习的兴趣。
教学重点、难点
8、9的分解组合,感受总数与部分数之间的关系。
活动准备
1、教具:“筹码”、“数字卡片”、“分合号”
2、学具:“筹码”、“数字卡片”、“分合号”纸、笔人手一份。
3、 《操作册》第27页。
活动过程
一、运用“数字碰球”游戏复习数的分解、组合。
二、学习8的分解、组合。
1、教师分给幼儿每人8片筹码,按自己的想法分成两份,并用“数字卡片”、“分合号”记录分解结果,先请分成7和1的幼儿展示自己的分法和结果,引导幼儿感受将8分成7和1或分成7和1,虽然改变了两个数字前后顺序,但合起来的结果都是一样的。
2、请8分成2和6,3和5两种分法的幼儿展示自己的分解过程和结果,引导幼儿找出与这种分法的另外两种记录结果。小结俩个部分数,交换了位置,合起来总数是一样的。
3请还有不同分法的幼儿展示:即8分成4和4.
4让幼儿集体完整地读一读8的分解和组合。
三、学习9的分解、组合
1、教师分给幼儿每人9片筹码,让幼儿尝试把自己每次分到的结果记录在纸上,并引导幼儿在摆分合式时按一个分数递增,另一个部分数递减的规律来摆分合式并记录,再找出其中有相同数字的分法。
2、把幼儿分解的结果展示在黑板,并进行检查。
四、游戏活动:做手指游戏“找部分数”。
五、交流小结,收拾学具。
六、活动延伸:完成《操作册》p27
1、这节课活动目标很明确难度适中,大部分幼儿能听懂,学会自己操作,幼儿动手能力也比教强,学习兴趣浓厚
2不足:教师讲课不够幼儿化。上课时间太长。
17的分解教案篇7
整式乘除与因式分解
一.回顾知识点
1、主要知识回顾:
幂的运算性质:
aman=am+n(m、n为正整数)
同底数幂相乘,底数不变,指数相加.
=amn(m、n为正整数)
幂的乘方,底数不变,指数相乘.
(n为正整数)
积的乘方等于各因式乘方的积.
=am-n(a≠0,m、n都是正整数,且m>n)
同底数幂相除,底数不变,指数相减.
零指数幂的概念:
a0=1(a≠0)
任何一个不等于零的数的零指数幂都等于l.
负指数幂的概念:
a-p=(a≠0,p是正整数)
任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.
也可表示为:(m≠0,n≠0,p为正整数)
单项式的乘法法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
单项式与多项式的乘法法则:
单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.
多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的.每一项与另一个多项式的每一项相乘,再把所得的积相加.
单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2、乘法公式:
①平方差公式:(a+b)(a-b)=a2-b2
文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.
3、因式分解:
因式分解的定义.
把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.
掌握其定义应注意以下几点:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能分解为止.
弄清因式分解与整式乘法的内在的关系.
因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.
二、熟练掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;
(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.
(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
2、公式法
运用公式法分解因式的实质是把整式中的乘法公式反过来使用;
常用的公式:
①平方差公式:a2-b2=(a+b)(a-b)
②完全平方公式:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
17的分解教案篇8
教学目标
1、 会运用因式分解进行简单的多项式除法。
2、 会运用因式分解解简单的方程。
二、教学重点与难点教学重点:
教学重点
因式分解在多项式除法和解方程两方面的应用。
教学难点:
应用因式分解解方程涉及较多的推理过程。
三、教学过程
(一)引入新课
1、 知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a—b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身: ①分解因式:(x +4) y — 16x y
(二)师生互动,讲授新课
1、运用因式分解进行多项式除法例1 计算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一个小问题 :这里的x能等于3/2吗 ?为什么?
想一想:那么(4x —9) (3—2x) 呢?练习:课本p162课内练习
合作学习
想一想:如果已知 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若ab=0 ,则有下面的结论:(1)a和b同时都为零,即a=0,且b=0(2)a和b中有一个为零,即a=0,或b=0
试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、 运用因式分解解简单的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2
等练习:课本p162课内练习2
做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?
教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) —16x =0解:将原方程左边分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接着继续解方程,5、 练一练 ①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知识,总结收获因式分解的两种应用:
(1)运用因式分解进行多项式除法
(2)运用因式分解解简单的方程
(四)布置课后作业
作业本6、42、课本p163作业题(选做)