学会写好教学反思才能提升教师的自我发展能力,在现阶段的教学结束后,老师们在回顾这段期间的点点滴滴一定都有认真写好教学反思,下面是职场范文网小编为您分享的一元一次不等式组的教学反思5篇,感谢您的参阅。

一元一次不等式组的教学反思篇1
用函数的观点看方程(组)和不等式,是学生应该学会的一种数学思想方法。教学过程中要让学生理解一次函数与一元一次方程、一元一次不等式、二元一次方程组的内在联系,明白方程(组)、不等式与函数三者之间可以相互转化、相互渗透,让学生成为学习的主导者,主动去观察、分析、归纳与总结,得到更深刻、透彻的知识点,并且让学生在交流中体会成功。
教学优点:
1、能积极学习并采用多媒体课件进行授课。应用多媒体课件直观、明了的展示了一次函数与一元一次方程、一元一次不等式及二元一次方程的联系,且课堂容量大、课堂效率高。运用幻灯片让枯燥的理论知识直观、形象、生动起来,激发了学生学习的积极性。
2、“数形结合”思想的完美体现。我能够利用一次函数图象从“形”方面直观地表示方程(组)和不等式的解或解集的含义,反过来,又从“数”的方面来解释方程(组)的解及不等式的'解集实质就是图象上对应点的自变量的取值或取值范围。这节课让学生充分感受到“数形结合”思想的重要性。
教学不足:
1、课堂容量有些大,学生组内讨论时间较少,学生单独回答问题的机会也有点少。
2、缺乏对学困生的关注、指导和帮助。
3、对学生语言表达能力估计过高,用函数观点解释方程、不等式,学生只可意会,不会言语。
一元一次不等式组的教学反思篇2
本节课我从复习旧知识,提问,动手操作,合作交流、形成共识的基础上,让学生理解一元一次不等式的概念及不等式的解法步骤。在课堂活动中经历、感悟知识的生成、发展与变化过程,重在学生参与完成。通过精心设计问题、课堂讨论,中间贯穿鼓励性语言,并让学生自己理清思路、板书过程,锻炼学生语言表达能力和书写能力,激发了学生学习积极性,培养学生的参与意识和合作意识,学生在各个环节中,运用所学的知识解决问题,进而达到知识的理解和掌握,使学生真正参与到知识形成发展过程中来。
本节课较好的方面:
1、本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;
2、课程内容前后呼应,前面练习能够为后面的例题作准备。
3、设计学案对学生学习的知识进行检查。
不足方面:
引入部分练习所用时间太长,讲评一元一次不等式的概念太细致,导致了后段时间紧,部分内容不能完成。
我深感,只有当学生真正获得了课堂上属于自己学习的主权时,他们个性的形成与个体的发展才有了可能。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。这说明,一种新的`教学理念要真正成为师生的教育行为,还有很长的路要走。我将和我的学生在这一探索过程中不断努力前行,总之,我们在课堂上还是要尝试着少说,给学生留些自由发展的空间。但在课前,教师必须多做一些事,例如精心设计适合学生的教学环节,多思考一些学生所想的,真正做好学生前进道路上的领路人。
一元一次不等式组的教学反思篇3
这节课我的设想是:在学习不等式的基本性质的基础上,类比一元一次方程的解法,学习如何解一元一次不等式,学会用数轴直观的表示不等式的解集(数形结合思想),注意其中的区别与联系(即类比思想),下面我对本节课的讲课作如下分析。
一、由于录课在外校,自己对学生不了解,课上的不是很好,匆忙的复习不等式的性质后就让学生进入下一个环节,以至于先学环节不连贯,大约有2分钟后还是能充分调动学生的积极性,并注重了学生回答:在两边同时乘以或者除以负数时,不等号改变方向,这个环节能想方设法鼓励孩子,这时课堂气氛也开始活跃起来。
二、在学习新知的教学中,我采用了先学后教,当堂训练的教学模式。我先引导学生通过看教材思考,运用举例子等学习活动,将主动权交给学生,这样不仅培养了学生小组合作学习的能力,同时也提高了其参与尝试的兴趣。其次,我在后教环节,除让三个孩子上黑板练习外,其余学生分组练习,同时,我在课堂巡堂时,检查每个学生的练习,发挥学生的力量,开展“生帮生”的活动,放手给孩子改正的权利,发现问题及时纠正。
三、我采用引导发现法培养学生类比推理能力,通过类比一元一次方程的解法归纳一元一次不等式的解法,并在小结环节充分发挥学生的主体作用,让学生自己发表见解,使学生在轻松愉快的气氛中掌握知识。
总之,这节课有收获也有遗憾,学生的积极性和主动性有了提高,不足的是先学环节耽搁了时间,因此在今后的教学中,一方面加强训练,锻炼学生的解题能力,同时通过“纠错”的练习和学生的相互学习逐步提高解题的正确性。
一元一次不等式组的教学反思篇4
本章的重点是一元一次不等式的解法,难点是:不等式的解集、不等式的性质及应用不等式解决实际问题的能力,特别是实际问题中的列不等式求解。
1、教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的'方法。至于有些课外书用“同大取大、同小取小、大小小大取中间、大大小小解不了”求解不等式,我认为增加学生的学习负担,不易于培养学生的数形结合能力。在教学中我要求学生在解不等式(组)的时,一定要通过画数轴,求出不等式的解集,建立数形结合的数学思想。
2、加强对实际问题中抽象出数量关系的数学建模思想教学,体现课程标准中:对重要的概念和数学思想呈螺旋上升的原则。要注意对一元一次方程相关知识的复习,让学生进行比较、归纳,理解它与一元一次不等式的的联系与区别(特别强调“不等式两边同时乘以或除以一个负数时,不等号方向改变”),教学中,一方面加强训练,锻炼学生的自我解题能力。另一方面,通过“纠错”题型的练习和学生的相互学习、剖析逐步提高解题的正确性。
3、把握教学目标,防止在利用一元一次不等式(组)解决实际问题时提出过高的要求,陷入旧教材“繁、难、偏、旧”的模式,重点加强文字与符号的联系,利用题目中含有不等语言的语句找出不等关系,列出一元一次不等式(组)解答问题,注意与利用方程解实际问题的方法的区别(不等语言),防止学生应用方程解答不等关系的实际问题。
4、各种书籍出现的应用题里面文字有的自相矛盾,教学时教师要合理利用和指导学生选取辅导书,如课本“以外”与“至少”等。
一元一次不等式组的教学反思篇5
一元一次方程、一元一次不等式和二元一次方程组在初一的时候就已经学过了,而《用函数观点看方程(组)与不等式》这节就要求学生利于函数的观点重新认识、分析。
在复习导入过程中,我给出一个一元一次不等式的的题目:3x—2>x+2。同学们都笑开了花,有同学说:“这么容易,老师,我们已经不是初一的`小孩子了。”也有同学直接说出这个不等式的解。这时,我提出了问题:“谁能把刚刚学习的一次函数和这个不等式联系到一起?同学们可以大胆想象。”由于学过利用函数观点看方程,有很多同学反映比较快,说:“画两个一次函数y=3x—2和y=x+2的图像,然后再观察”。我按照他的思路讲解了这种方法,同时提出还有没有更简单的方法,引导同学通过一个函数图像来解决问题。
这节课要结束了,突然有个同学问:“老师,本来我们能用初一的知识解题的,为什么要弄的这么麻烦啊?”“问的好,这节课的目的就是培养同学们数形结合思想,为今后的学习打好基础”。